

September 14, 2006 1

E-Mail Preservation Project

The Electronic Mail Preservation Collaboration Initiative, if funded, will build a set of
software tools that will enable each knowledge worker to selectively save the e-mail that they
receive and send during the course of conducting government business to a centrally
managed, archival message store. Tools will also be created to help manage the servers and
processes required to collect and preserve these e-mail messages.

The collected mail message will be stored in an XML encoded format in addition to the
original, as received, messages using the standard Internet Message Format1. For the XML
version, attachments will be extracted and saved in their original, as-received, format as a
native stand-alone file. The association between message and attachment will be kept and will
allow navigation from message to attachment and from attachment back to message. In
addition, for those attachments that lend themselves to such treatment, a Portable Document
Format (PDF) version of each attachment will be created and saved along side the original.

The Internet Message Format encoding method is the lingua franca of the interconnected e-
mail system. Almost all e-mail messages transmitted today use this standard protocol. Every
mail client is expected to follow this format when preparing the message for sending, and
every mail client is expected to be able to interpret and then render for display any message
received in this format.

The Internet Message Format encoding was designed in the early days of the fledgling
Internet, before the advent of XML and Unicode. (Circa 1975). At that time, designers were
faced with a problem of how to send characters above the normal ASCII2 code set, since
many routers at that time used the 8th bit for transmission control instead of including it as
part of the information payload. UUencoding and Bin Hex3 encoding were invented to solve
these problems. Mail message today still use these nearly antiquated protocols simply because
it is easier to continue their use than to build a “2.0” version, and the framework that would be
required to allow the smooth transition from the existing “1.0” version currently in use.

There have been many extensions made to the Internet Message Format protocol. Some of
these extensions are well documented and widely used; some are nearly proprietary and are
only used by a single brand of e-mail program. You may be familiar with one common
example4 if you have ever tried to open an attachment named “winmail.dat” sent to you from
someone using Microsoft Outlook / Exchange.

The facts that there are many different variations of how this protocol is implemented, the
protocol itself has changed and will most likely continue to change, and that the protocol does
not use the latest encoding technologies make it difficult to archive e-mail messages. Instead
of attempting to preserve the ability to parse, search, and display every flavor of e-mail
message via complex software over untold years, this project’s strategy is to develop a single
XML-based encoding format to which every message can be converted. In this way, as the
use of a particular variation of the Internet Message Format is discontinued, so can the
support of the software that is responsible for reading it: once the e-mail messages have been
preserved, only the software that is responsible for reading the preservation format needs to be

September 14, 2006 2

retained. Initial testing and support will consider the widest possible group of e-mail message
implementations. As new variations are found, the software will be incrementally enhanced to
support these new versions. XML is the perfect tool for conducting this type of work. XML is
extensible. New elements can be added, that can be clearly documented without “breaking”
the software that is responsible for processing the data being stored. In this way the
processing of keeping up with change becomes manageable.

Collecting and preserving e-mail messages is of course only the first part of the problem, we
also need to be able to make the data in our care accessible. This project’s strategy for doing
this has three components:

 1. Build an XML-based e-mail reader.

Each account is stored as a single XML file. By using XML-based technologies such
as XSLT and XQuery, a simple mail browser and search interface can be built. Since
all of the attachments are stored as native files, Google desktop search can be used to
conduct a full-text search on the collection of attachments associated with this
account. The logical place to include this functionality is as an extension to the
management console. The management console is used to get reports on each active
account, the size of each account, and the date of the last capture. By integrating an
e-mail browser into the management console, one will be able to select an account
and start the XML-based e-mail reader to view what has been collected so far. Future
projects will probably provide this functionality over the Internet. Upon completion
of this grant, we will have a working prototype running on MS Windows.

 2. Build an export utility.
Write software that will allow a single account’s worth of e-mail to be saved in
formats that can be read by a popular e-mail client. As time passes, the e-mail client
that is most common will change. With this project, it will always be possible to
convert the mail preserved by this project into whatever format happens to be current
at the moment. Upon completion of this grant we will demonstrate the ability to
export to Thunderbird5 (Thunderbird is a free e-mail client provided by Mozilla
Corporation, the same people that make the FireFox browser.)

3. Promote the use of a common XML-based format for the exchange of entire sets of
archived e-mail.

There are many solutions available today that provide for the capture of, and access
to e-mail. Full-blown content managers such as Documentum fill this bill and others
exist that offer a more focused solution for companies that must react to the ever-
increasingly stringent audit-related requirements placed on them such as those
introduced by Sarbanes-Oxley. We think that it is important that each of these
solutions support the ability to export their entire holdings in a common file format
and to be able to import what others have exported. This project will provide much
of the necessary technical groundwork to fulfill this wish.

September 14, 2006 3

Recived mail, sent Mail and
unsent mail (drafts) deemed to
have archival value are
uploaded to the Archival Mail
Store via the IMAP protocol.

Mail can be organized into
folders as necessary.

Clients receive and
download mail from their
normal POP3, IMAP,
Exchange, Domino, and
Groupwise servers as
usual.

Any IMAP capable
E-Mail Client:

Outlook, Eudora, Thunderbird,
Lotus Notes, Groupwise

Standards based
IMAP, or POP3

MS Exchange

IBM Lotus Domino*

Novell Group Wise†

hMailServer

hMailServer

Archival E-Mail
Collection Servers

E-mail Clients E-mail Server
Systems

Message store uses IMAP to
receive mail. Authorized users
can browse and download
archived mail.

Mail Flow to Archival Mail Store

Collecting Mail

All of the modern, mainstream, e-mail clients can be extended to include a second IMAP
account. Users can then on a folder-by-folder or on a message-by-message basis choose which
messages should be archived. Just as messages can be downloaded from an IMAP server,
messages can be uploaded to the Archival message server. A folder structure similar to the one
used to organize the user’s normal mail can be replicated on the archival mail server or,
alternatively, a folder organization specifically designed for archival arrangement can be used.
Mail can be moved or copied to the archival server periodically or all at once at the end of the
information life cycle.

September 14, 2006 4

Because the Archival Collection Server is implemented using a standard IMAP server, the mail
stored there can be opened and read or downloaded again. It gives the user a secondary storage
resource that can be used for a variety of purposes.

In theory any standard IMAP compliant e-mail server could be used as the core of the Archival
Collection Server solution. All that is needed, in addition to the standard IMAP capabilities, is a
way to get access to the mail currently stored on the server and most implementations provide
this: either by providing direct access to the mail store or via an application programming
interface (API)6. We have selected the hMailServer7 IMAP server for the following reasons:

1. Messages are stored as native files on the local file system in the exact format as they
were received.

2. The index of accounts, and the details about the folders and messages contained therein
are kept in a SQL database. This provides us with quick and easy access to this critical
information.

3. All aspects of administering the server are scriptable via a simple application program
interface.

4. hMailServer is a popular, open source product that is well tested. There is large and active
user community that is continually exercising the product, reporting bugs,
documenting solutions, and making feature requests. hMailServer is a favorite among
web hosting providers, and commercial support is available.

5. The source code is available and can be modified. If we find some otherwise
insurmountable problem we can always modify the existing code.

6. hMailServer is free. Anyone wanting to test our archiving solution will not be required to
purchase expensive e-mail server software. Some potential users of this e-mail
archiving solution may be cost conscious and will want to run the solution as
configured. Others may want to purchase commercial support for hMailServer, and
still others may want to take our solution and adapt it to an Enterprise-ready platform
such as MS Exchange Server or SendMail. Starting with a free solution leaves the
widest range of choices open.

The software we are developing is quite separate from the hMailServer. The part of our software
that depends on the ability to access a message store, and that has so far been written to work
exclusively with the hMailServer implementation, is isolated from the rest of the software. In this
way if we or someone else decides to adapt this software to work with another IMAP server or to
work with some other type of message store entirely, it will be clear which parts must be studied
and adapted.

EMCAP Mail Processor

Although we haven’t yet formally decided on a name for this software yet, for the purposes of
this paper let it be referred to as EMCAP (an acronym for E-mail Collection and Preservation.)
EMCAP is composed of two main parts: a management console and the processing engine.

Management Console:

September 14, 2006 5

The management console performs the following functions:

1. Shows the list of active accounts and allows an administrator to configure the following
options:

a. The duration that captured mail remains available on the IMAP server before it is
removed. (Once mail has been removed it is only available from the archival message
store.) This is called the “Dwell Time.” Depending on the environment and intended
use of the Archival Collection Point, this may be set anywhere from 2 months to
infinity. Many users will probably expect to be able to use the server as a long-term
archival store and will not want the life-cycle management to be automated. Those
purchasing the disk storage and support contracts may want to place a limit on this to
reduce the amount of resources committed.

b. The length of time a message can stay on the IMAP server before deleting the message

will not cause the message to be removed from the archival store. Messages removed
after this point will only be removed from the active IMAP store but will remain in the
archival store. This is called the “Delete Window”.

c. The folders that will be examined during the next capture cycle. Usually this option will

indicate that all folders be examined. In those cases where the user would like to store
non-archival mail on the server or in those cases where the hMailServer is also being
used as the primary mail server, the list of folders where contents will be captured can
be limited.

(Note: These options can be set on an account by account basis, for an entire server, or on a

domain by domain basis. Accounts not explicitly configured will assume the settings
specified for their parent domain.)

2. Produces activity reports showing:

a) The total number of messages that have been collected per account, per domain or for
the entire server.

b) The total amount of storage space used to store the archived messages and attachments
and the amount of free space remaining.

c.) The total number of new messages collected during the last capture cycle.
d.) Any errors that may have occurred during the last capture cycle.
e.) The list of accounts that have had no activity in X number of days.

3. Schedule the times and dates when the capture process will run. Typically this would be each
day after normal work hours.

4. Start and monitor export jobs.

5. Allow an administrator or other authorized user to browse and search the contents of the
archival store on an account-by-account basis.

September 14, 2006 6

See appendix II for some screen shots of the management console.

Processing Engine:

The Processing Engine is run each day and finds, processes, and places into the archival store
any new messages that have arrived since the last time it was run.

This work is performed by querying the IMAP server for the list of active accounts and then
processing each account message by message. The following is checked for each message:

1. Has the message been processed before? Does it exist in the archival store? If not then the
message is processed and added to the archival store. Messages that have already been processed
are skipped.

2. If it has been processed before, did the user move it to a different mail folder since it was last
examined? If the user has moved it, update the archival store to reflect its new location, creating
any new mail folders in the archival store as necessary.

3. After having processed all of the messages currently on the IMAP server for this account, see
if there are any message in the archival store that were not matched. From these, see if any were
captured within the last X days as specified by the Delete Window setting. These messages are
then removed from the archival store. (The user uploaded a message to the server, then later
deleted that message. If the message was removed within the Delete Widow, typically 1 month,
then it is assumed that the user has reevaluated the message and no longer considers the message
archival. The message is then removed from the archival store honoring the user’s assumed
intent. If the message is removed after the Delete Window has passed, then it is assumed that the
user still considers the message to have archival value, but no longer requires access to the
message and would like to discontinue its active management.)

4. After having processed all of the messages currently on the IMAP server for this account, see
if any of the messages have been in the archival store for greater or equal to the Dwell Time.
These messages are removed from the IMAP server.

September 14, 2006 7

Archival Store Organization:

Below is a screen shot of a sample archival store with two accounts in a single domain:

The folder EmailToXml is the root of the archival store. This folder is chosen when the EMCAP
software is installed and can be renamed or moved if needed.

Each domain has its own folder, and within that there is a folder for each account. In this
example, the domain devrec.ah.ncdcr.local has two accounts: charles.smith and david.jones.

Within the account folder there is a folder named “originals”. Each captured message is stored as
a separate file within this folder in the Internet Text Message format as an .eml file. This is an
exact, byte-for-byte copy of the message as it was originally sent over the wire from sender to
receiver.

Instead of simply putting all of the original copies into a single folder, they are broken into
groups of 1000, a sub folder named “0-999” hold the first 1000, if and when the 1001st message
is captured a folder will be created named “1000-1999.” This is done to prevent any single folder
from having too many files. If a folder has more than several thousand files it takes noticeably
longer to browse, sort, search, etc.

The screen shot below demonstration this concept. Notice that each message is named with the
full name of the account, and that each message is numbered sequentially starting with 0 in the
order that it was first found on the IMAP server. Using the full name aids if clarification for

September 14, 2006 8

those cases when a collection of e-mails is exported out of the archival store consisting of
content from more than one account.

Within the account folder, you will see another folder named “0-999” This folder is used to store
the text bodies and all of the attachments for each message. The screen shot below shows s the
items that belong to message #1.

September 14, 2006 9

The original message from which the files were generated is composed of four pieces; or in the
parlance of MIME8, four body parts. MIME is the internet standard that specifies how the bodies
of Internet Text Messages shall be organized so that they may include arbitrarily formatted
binary data other wise know as attachments. (MIME is an acronym for Multipurpose Internet
Mail Extensions.)

The author of this message did so using a mail client that supported the use of HTML to prepare
the content of the message. The mail client was smart enough to include a text only version in
addition to the HTML version. This text only version is listed as the first body part, while the
HTML version is listed second and was identified as an alternative version of the first using the
MIME media type: “multipart/alternative”. Both of these body parts were included “in-line”
within the original message either as quoted-printable text or simply as plain text – that is if you
opened up the .eml file in standard text editor you would be able to immediately recognize and
read these two parts. (For the second part you would see the actual HTML markup.)

The third and fourth parts were included within the message as BINHEX encoded blocks of text
that when decoded would create the binary content making up the two word documents named
“CIO Memo 6-17v1_.doc” and “Sec Stds Agenda 06-17-02-liasons-doc.doc” These body parts in
MIME parlance are considered external body parts, and would not appear as part of the message
itself, instead the receiving mail client would give the user the opportunity to open or save the
attachments as separate entities.

All body parts are stripped from the message by the EMCAP processor and saved as native files
in the attachments folder for the owning message; this includes those body parts that would be
displayed in-line by e-mail client software as well as those that are treated as external entities.
For more information see Appendix 1 (Design Rational Behind Saving the Message Content As
Native files.)

Note that for each attachment a PDF9 version has also been saved. If the attachment is a type of
document that can be saved as PDF, then the EMCAP software will start the appropriate PDF
generator and will save the resulting PDF document in the same folder as its source document.
The EMCAP software uses the MIME type of the attachment to determine if the conversion is
possible and which PDF converter to use.

What remains of the message after the content of each body-part is removed and converted to
XML. For each account, a single XML file is maintained. If you look back at the screen shot on
page 8, you will see the file is stored directly within the account folder and is named with the full
e-mail address. In this example it is david.jones@devrec_ah_ncdcr_local.xml.

This XML file is the central “glue” that holds everything together. Any processor will be able to
read the XML file, use it to locate each of the content files and create a new e-mail message that
is for all intents and purposes identical to the original. The EMCAP software will provide an API
so that consumers can simply request a particular e-mail message be supplied. See Export
Options on page 14.

September 14, 2006 10

The size of this XML file will remain manageable since what is left after stripping the content
from each message and then converting it to XML is consistently between 3K and 5K bytes. An
account with 10,000 e-mail messages would be about 40MB in size. An upper limit would be
50,000 e-mail messages per account for a file size of 200MB. (In the rare case this is exceeded,
the mail can be split into two accounts on a chronological basis.)

The final piece of the Archival Store Organization is the accounts.xml file. This file stores the
list of each account that is represented in the Archival Store. It records information for each
account required by the Processing Engine to perform its work such as:

 1. The name of the account.
 2. Whether the account should be processed during the next capture cycle.
 3. The capture settings (Dwell Time, Delete Window, Folder List)
 4. The time the last capture was performed.
 5. The number of new messages added during the last capture cycle.

In addition, information useful to the archivist and future researchers is recorded, such as:

 1. The full name of the person whose mail is being archived.

2. The unit within the organization to which the person belongs.
3. The person’s title.
4. The person’s “regular” e-mail address.
5 The date on which the archival collection account was created.
6. The date on which the archival collection account was closed.
7. The earliest date represented in the collection.
8. The latest date represented in the collection.

Message Processing:

Messages that have been archived for a particular e-mail account are stored as XML in the
“messages.xml” file. These xml files have a very definite structure and an XML Schema has
been developed that can be used to validate these documents. Tentatively we have used the name
space http://www.ah.dcr.state.nc.us/xmail/msg and have made the schema available at
http://www.ah.dcr.state.nc.us.us/xmail/msg.xml

September 14, 2006 11

The basic layout for all XML files that conform to this schema is as follows:

Messages
 Messsage
 Xml-MessageId = 1
 MessageId = “<00b401c21150$ffc7b850$6501e90a@ah.dcr.state.nc.us>”
 FolderId = 1
 Headers
 Header
 Name
 Value
 Header
 Name
 Value
 Message
 Xml-MessageId = 2
 MessageId = “4501D501.9040807@ncmail.net”
 FolderId = 5
 Headers
 Header
 Name
 Value
 Header
 Name
 Value
 Body
 BodyPart

 Header
 Name
 Value
 Header
 Name
 Value

 BodyPart
 Header
 Name
 Value
 Header
 Name
 Value

Folders
 Folder
 FolderId = “1”
 FolderName = Inbox
 Folder
 FolderId = “2”
 FolderName = “Correspondence”
 Folder
 FolderId = “5”
 ParentFolderId = “2”
 FolderName = “2004”

*The ending tags have been removed and some values have been provided as examples
for clarity.

September 14, 2006 12

Each header in the original message is recorded in the XML file using the pair of tags named:
“Name” and “Value”. The name of the header is placed in the name tag and likewise the value is
placed in the value tag. By using this generic approach we are guaranteed to be able to
accommodate any set of message headers ever devised. Consumers wishing to use and compare
header values across different messages are responsible for interpreting these header values.

By using this generic approach we are separating the act of preserving the information from its
subsequent processing. The EMCAP software stack will provide helper routines for retrieving
more fully parsed values from the XML file for those consumers that need it. Additionally, if the
need arises, we will devise a second XML schema that would store the most frequently used
headers completely parsed. The API would then provide a method to request a fully parsed
version of the preservation “messages” XML file. This layered approach is felt to be best in light
of the complexity of accommodating the myriad ways in which headers have been encoded. For
more information on this subject, please see “Internet mail message header format10” by D. J.
Bernstein.

In the original message, some header values will appear as normal text, some header values will
be encoded as quotable-printing text, and still others will use the semantics defined in RFC
204711 so that non-ASCII characters can be represented. In all cases the value is converted to
Unicode.

Each body part is identified. All in-line text body parts are converted from their possible quoted-
printable format and saved as native files. Body parts that represent attachments are parsed to
find their MIME type and are stored on the local file system after being un-encoded from either
BINHEX or UUencode using their original filename.

All headers describing the body part are copied into the XML document. The MIME architecture
is well defined and so many of the headers are converted to named xml elements as opposed to
the generic approach used above for the general message headers. A header is added to indicate
the exact location of the native file that now houses the body-part’s content.

If a body part is named winmail.dat, it is tested to see if it contains a set of attachments using the
Transport Neutral Encapsulation Format (TNEF). If this is the case, the file is “exploded” and
each of the component files are saved to the native file system. XML tags are generated
providing an index to the attachments found within the TNEF formatted file. The TNEF file is
also saved on the native file system [just in case].

Some body parts may be of type “message/RFC822”. This occurs when the attachment is itself
an e-mail message, possibly with one or more attachments, possibly one of which is an e-mail
message, ad infinitum. Both the xml schema and the EMCAP message parser are equipped to
handle this situation. Processing is paused for the current message at this point and processing of
the new message is begun. The xml elements that are generated from parsing the child message
are placed into the XML file as sub elements of the body part element for the parent message.
The child message is assigned a message id, so that its body parts and attachments can be saved
to the local file system. There is no original .eml file written just for the child message since it is
a component of the parent message whose original has already been saved. Once processing has

September 14, 2006 13

completed for the child message, and all of its child messages, ad infinitum, processing is
resumed for the parent message.

In summary, message content is extracted and made available as primary digital entities, while
the message structure is converted to XML. This transformation takes the e-mail from an
environment where it is only accessible by special-purpose tools and systems, to one in which
general-purpose tools can readily be applied. Messages are now simply files that can be opened,
copied, printed, searched, etc. without having to rely on special software and message headers
can be directly manipulated with a set of standard XML-oriented tools.

Export Options:

The archival store’s architecture is designed for preservation, not performance. The facilities
offered by the EMCAP software that allow you to list the accounts, their sources and their
contents and the XML-based e-mail client that supports simple searches within a single account
are only the first steps in harnessing what has been collected. There are many ways this
information can be used. Conducting searches across many accounts simultaneously and
automatically finding and presenting the conversations that took place among the participants are
but two examples. Because of the amount of data that must be processed, it is clear that the plain,
content-oriented XML used by the archival store will not be enough. Additional indexes will
have to be compiled. (These indexes essentially allow much of the necessary processing to be
performed in advance, well before the first query is submitted.) These indexes could be stored as
additional XML files, however in many cases it will be more effective to simply export the
contents of the archival store to a standard SQL database or third party e-mail access solution.

The diagram below illustrates the options for export.

Electronic Content Management systems (ECMs) are an obvious target for exporting files as
they are increasingly sophisticated in their ability to handle e-mail and are an obvious target.
Most ECMs support the import of e-mail messages one at a time via the normal application
access screen, and by bulk import from a mail server or a mail client’s local store. Part of this
project’s goal is to make the XML schema we have adopted and the attendant group of archival
files a standard for the exchange of large sets of e-mail in addition to its use for long-term
preservation. Each brand of ECM would support dumping its entire collection of e-mails to an
archival store, and conversely be able to populate its own database from a collection of e-mail
messages stored as EMCAP does.

September 14, 2006 14

windows file mgmt

Archival E-Mail
Collection Server

Mail Flow From Archival Mail Store

XML
Database

E-mail
Client Local

Storage
(MBOX)

Export Options

hmail Server

Local File
System

Archival Storage
(Tape / DVD)

 hmail server adapter

EMCAP software stack

account enumerator
and message parser

XML-based message
and account

storage and retrieval
routines

export
routines

Direct Access Options

EMCAP Manager, Mail
Browser and Viewer.

Ad-hoc XML-based tools
and query engines.

September 14, 2006 15

While it is beyond the scope of this project to actually demonstrate the import into a full-
fledged ECM, the project will demonstrate the use of the provided API that will help out
greatly in doing this work. These routines will provide a set of software services that each
export implementation can use. For example, an exporter need only call
“GetBodyPartList” to retrieve the complete list of filenames, and if being called remotely
the associated URIs, for each body part of a particular message. This saves each exporter
from having to provide its own file access layer. This architecture also isolates the
implementation of the archival store from the outside callers. If a change is made to the
inside architecture, only the API will need changing, the outside callers can remain the
same.

XML Databases are also a good candidate. There are many document oriented XML
databases that could be employed for special research projects. Someone wanting to
export e-mail messages from the archival store to an XML database should have no
trouble at all making the conversion since XML databases generally have robust support
for using foreign XML formatted sources.

Today’s e-mail clients offer powerful tools for working with e-mail. Converters could be
written to take one or more accounts and export their contents directly to the format used
by the e-mail client. The problem is that there is no single standard used by all e-mail
clients for managing the local store.

The mbox format with slight variations is the format used by the majority of e-mail users
with the exception of MS Outlook and the web-based mail programs such as AOL,
Hotmail, Yahoo and G-Mail. The mbox format is used by Qualcomm’s Eudora, Mozilla’s
Thunderbird, Netscape’s Messenger and many of the mail programs that run on Unix /
Linux.

There are many software utilities designed to work with the mbox format and many e-
mail clients can import mail in this format even it they don’t use as their native format.

This project will demonstrate the ability to export any single account in its entirety to the
mboxrd format, which is used by the free Thunderbird mail client.

Security:

Virus detection and removal becomes complicated when your goal is preservation. We
should make no assumptions about where the message came from or where it will be
used. The virus detection software must be able to identify viruses that are designed to
strike any operating system, office applications and e-mail client – not just the ones that
are used on the current platform.

Viruses can be checked at three distinct points along its lifecycle-- just after it is received,
while it is sitting in the archival store, and before it is opened for reading or exported.

September 14, 2006 16

The hMailServer can work with a variety of the popular antivirus software packages
designed for mail systems.

As each message is processed and placed into the archival store it is checked for viruses.
If a virus is found and the message or one of its attachments can be sanitized without any
question as to whether doing so will change the content that was intended be archived
then this is done. If not, the message is archived as found – virus and all. Within the
XML message file the virus status of each message will be tracked. In these cases the tag
will name the virus that was found and the date on which it was found. A message is then
sent to the e-mail address listed as the contact for this account providing details about
which messages were infected, and what actions were taken.

New viruses are discovered often. A message that has a virus could be uploaded and go
undetected by the antivirus software. Only some days or weeks later would the software
be updated to recognize the new strain. For this reason every message younger than one
year should be checked periodically.

The e-mail messages should also be checked before they are displayed if they have not
been checked in the last 24 hours. The EMCAP software stack will support the scanning
of files upon request as part of the export process. Depending on the export target this
may not be necessary since most ECM software and many e-mail clients also scan each
received e-mail message.

Summary:

Using IMAP to collect mail is efficient and provides a service that can easily be
incorporated into most work environments. Reducing the barriers to access by converting
e-mail messages to XML and saving their contents to native files provides a storage
solution that can remain unchanged for the foreseeable future. Using this storage
structure as a mechanism for exchange and export will allow all the platforms in use
today and tomorrow to converge on a standard for preserving e-mail. We should very
soon be in a position where we only have to support one set of tools and services for
preservation, but yet have a wide variety of options for providing access. As progress is
made in the tools that are used to provide access, we should be able to evolve the export
and import facilities. Using a layered approach to the parsing and processing of e-mail
messages and using XML for the encoding will allow us to document and accommodate
the changes that will surely come, as the state of the art of messaging systems continues
to progress.

September 14, 2006 17

Appendix I

Design Rational Behind Saving the Message Content As Native files.

The design decision to store the in-line body parts as separate files versus including them
as part of the XML was carefully studied. Here are the arguments pro and con:

Pro inclusion:

For those messages that do not have any attachments, storing the message bodies with the
XML would result in a single file that could be transmitted or copied. Many messages do
have attachments however, and since we are not storing the attachments within the XML,
all of the attendant problems of keeping track of the various parts would still need
solving: Storing the in-line body parts separately does not introduce any new problems.

If one were to develop a full-text indexing engine that could “look” in the XML file and
extract the textual content of the included body parts, then no additional work would have
to be done to link the message proper with the items found from conducting the search.

Pro native files:

XML has definite rules about what can be used as character data. This is explained in the
“Character Data and Markup12” section of the XML specification. A fairly simple
encoding strategy must be employed: the contents would have to placed inside special
CDATA tags and every occurrence of “>” when preceded by “]]” would have to replaced
by its equivalent numerical character entity > or > and in order to disambiguate
the use of the & character it must be replaced throughout by & or & Upon
extraction this conversion would have to be undone. While not complicated and not
processor intensive, it does add one more barrier to access that must be addressed by
every consumer.

Including the message content in the XML file would dramatically increase its size.
Provisions would have to be made for processing multiple XML files per account. This
would increase the complexity of every single software tool that needed to operate
directly on the XML files.

In order to provide full-text searching capabilities, the full-text indexing engine would
have to be able to read and extract each body part from the XML file. By having the
content stored as native files, a standard full-text indexing engine could be used without
modification.

NOTE: any solution that provides the ability to conduct searches on the message headers
(i.e. in a structured fashion) and on the full-text of the message contents will necessarily
have to integrate structured and non-structured search technology. This is not an
uncommon design pattern; however making this realization does not favor the inclusion
or exclusion of the message content from the XML file.

September 14, 2006 18

The XML Query technology called XQuery is not designed to operate on large text
blocks; that is, it does not have a full-text searching component. Instead it is designed as a
counterpart to the database technology known as SQL.13 See “XML Query Use Cases” 14
for more information. Furthermore including the message content in the XML file
reduces the performance of most XQuery operations since the XQuery processor has to
cover more ground in the larger file.

Appendix II
Screen Shots of the Email Archiver Administration Console

View of the Email Archiver Administration Console after a capture was completed.

September 14, 2006 19

Report showing the total number of accounts and the beginning of the
summary details for the first account.

September 14, 2006 20

Continuation of the same report, showing the beginning of the next
account’s Summary Detail:

Settings Dialog box for a single account:

September 14, 2006 21

1 RFC 822 STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES

(http://www.faqs.org/rfcs/rfc822.html)
2 Wikipedia, the free encyclopedia – entry for ASCII

(http://en.wikipedia.org/wiki/ASCII)
3 Wikipedia, the free encyclopedia – entry for BinHex

(http://en.wikipedia.org/wiki/Binhex)
4 WinDeveloper TNEF View - User Guide -- Background on TNEF and MAPI messages

(http://www.windeveloper.com/OLView/olview_guide.htm#tnefviewtnefmapi)
5 Thunderbird 1.5 by Mozilla Corporation

(http://www.mozilla.com/thunderbird)
6 Wikipedia, the free encyclopedia – entry for API

(http://en.wikipedia.org/wiki/Application_programming_interface)
7 The hMailServer home page

(http://www.hmailserver.com)
8 RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies

(http://www.rfc-archive.org/getrfc.php?rfc=2045)
9 Wikipedia, the free encyclopedia – entry for PDF

(http://en.wikipedia.org/wiki/PDF)
10 Internet mail message header format by D. J. Bernstein

(http://cr.yp.to/immhf.html)
11 MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text

(http://www.rfc-archive.org/getrfc.php?rfc=2047)
12 Extensible Markup Language (XML) 1.0 (Fourth Edition) W3C Recommendation 16 August 2006, Section

2.4 Character Data and Markup
(http://www.w3.org/TR/2006/REC-xml-20060816/#syntax)

13 Wikipedia, the free encyclopedia – entry for SQL
(http://en.wikipedia.org/wiki/SQL)

14 XML Query Use Cases W3C Working Draft 8 June 2006
(http://www.w3.org/TR/xquery-use-cases)

